
Singularity

Giacomo Baruzzo, PhD

Department of Information Engineering

University of Padova

Acknowledgments: Marco Cappellato, Giulia Cesaro, Mikele Milia

Summary

• Introduction to Singularity
• Characteristics

• General workflow

• Working with Singularity
• Run an existing image

• Build an image

• Write a definition file

• Working with Singularity in CAPRI
• Slurm job

Singularity(CE)

SingularityCE (formerly Singularity) is a free and open-source HPC container
engine for Linux-base OS

Originally developed at Lawrence Berkeley National Laboratory

Currently developer by Sylabs company

Commercial version from Sylabs: SingularityPRO

Official website: https://sylabs.io/singularity/

How to install: https://sylabs.io/guides/latest/user-
guide/quick_start.html#quick-installation-steps

Version installed in CAPRI: SingularityCE v3.8.3

https://sylabs.io/singularity/
https://sylabs.io/guides/latest/user-guide/quick_start.html#quick-installation-steps

Singularity -> Apptainer

• Original Singularity project (i.e. the one before Sylabs fork) is officially
moving into the Linux Foundation, becoming Apptainer

• Sylabs’s SingularityCE and Linux Foundation’s Singularity (i.e. Apptainer)
will co-exist

• SingularityCE = Apptainer (for now)

For us: SingularityCE = Apptainer = Singularity

Singularity container workflow

• Singularity definition file: Text file containing Singularity
commands about how to create the image

• Singularity image: Immutable file containing a description
of the computing environment (libraries, applications, etc.)

• Singularity container: Runtime instantiation of a Singularity
image

Definition file Image Container

Build Run

Developer

User

Text file File .sif Application

Using container in HPC
Workflow

1. Build container on your own computer

2. Move the image from your computer to the HPC infrastructure

3. Run container on the HPC infrastructure

Definition file Image ContainerBuild Run

Why build container in your computer?
• The build process may require privileges (e.g. sudo)
• Building is not a computation intensive process
• Test on your computer before running on the HPC infrastructure

Singularity image

Singularity image are contained in Singularity Image Format
files (file .sif)

A SIF file describe an immutable container image: any
command run within the container can not alter the container
image (e.g. install/remove software in the container)

SIF files can be cryptographically signed to guarantee
immutability and provide accountability as to who signed it

SIF files can be encrypted, making everything inside the
container inaccessible without the correct key or passphrase

Possible scenarios
A) A Singularity image file is already available

B) A Singularity image file is available on an online image repository

C) A Singularity definition file is available

D) Write/modify a Singularity definition file

Image Container

Run

Image Container

Run

Definition file Image Container

RunBuild

Definition file Image Container

RunBuildDevelop

Internet

Possible scenarios
A) A Singularity image file is already available

B) A Singularity image file is available on an online image repository

C) A Singularity definition file is available

D) Write/modify a Singularity definition file

Image Container

Run

Image Container

Run

Definition file Image Container

RunBuild

Definition file Image Container

RunBuildDevelop

Internet

Run a Singularity image - exec

The exec commands allows to execute command within the container, so using the
software, libraries, dependencies, etc. installed within the container.

Example: run the python script hello_world.py within the container ubuntu.sif (i.e.
using the python installation within the container). Both files are in the home
directory.

$ singularity exec ubuntu.sif python3 hello_world.py

Hello world!

How it works:

1. the script hello_world.py is in the host file system (i.e. home directory)

2. even if it is outside the container, it is visible by the container (see next slides)

3. it is executed by the python installed within the container

4. the output “Hello world!” is then redirected to the host shell

/home/James

/tmp

/my_code/test

/my_songs/jazz

Python 2.7

Matlab

hello_world.py

Singularity

Fedora 34

Python 3.6
R 3.5.2 script.py

/my_script

ubuntu.sif

Python 3.6
R 3.5.2 script.py

/my_script

hello_world.py

+

Ubuntu 20

Ubuntu 20

ubuntu.sif

Run a Singularity image - exec

Why the python script is on the host filesystem but is still visible within the
container?

By default, Singularity links the following folders in the host to the corresponding
folders in the container

• User home directory (/home/$USER)

• Temp directory (/tmp)

• Other system directories (/sys, /proc, /var/tmp, /etc/resolv.conf, /etc/passwd)

The content of those folder are “visible” (read/write by default) within the container
and accessible with the same path used in the host.

If the container is runned by any other folder (or subfolder) within the user home,
then the container starting will be that folder.

Example: the container is runned from /home/James/Desktop -> the container will
start from /home/James/Desktop

Run a Singularity image - exec
$ cd /home/James

$ singularity exec my_cont.sif python3 hello_world.py

Hello world!

/home/James

/tmp

/my_code/test

/my_songs/jazzPython 2.7

Matlab

hello_world.py

Singularity

Fedora 34

Python 3.6R 3.5.2
script.py/my_script +

/home/James

/tmp

/my_code/test

hello_world.py

Ubuntu 20

By default, Singularity links some
host’s folders into the
corresponding ones in the container
•User home directory /home/$USER
•Temp directory /tmp
•…

Run a Singularity image - exec

In addition to the (default) folders, it is possible to bind one (or more)
directory in the host to one (or more) directory in the container.

What if my python script hello_world.py should read the text file
example.txt available in the host directory /data/input/ ?

Use the --bind option!

As example, let bind the host folder /data/input/ to the container folder
/mnt/my_data/ using the --bind option

$ singularity exec \

-–bind /data/input:/mnt/my_data \

ubuntu.sif \

python3 hello_world.py /mnt/my_data/example.txt

Run a Singularity image - exec
$ cd /home/James

$ singularity exec --bind /data/input:/mnt/my_data ubuntu.sif \

python3 hello_world.py /mnt/my_data/example.txt

Hello world!

/home/James

/tmp

/my_songs/jazz

Python 2.7

Matlab

hello_world.py

Singularity

Fedora 34

Python 3.6R 3.5.2

script.py/my_script +

/home/James

/tmp

hello_world.py

Ubuntu 20

/data/input example.txt

/mnt/my_data example.txt

d
efau

lt b
in

d
u

se
r sp

ecified
 b

in
d

Run a Singularity image - exec

In the host system, we would have run $ python3 hello_world.py /data/input/example.txt

However, the command to be run within the container must use the container paths, not the host
paths

$ singularity exec -–bind /data/input:/mnt/my_data ubuntu.sif

python3 hello_world.py /mnt/my_data/example.txt

The container and the host system are two separated systems

• /data/input/ (and so /data/input/example.txt) does not exists in the container, it exists
only in the host

• /mnt/my_data exists in the container, and it is a link to the host folder /data/input, so the right
way to identify example.txt in the container is /mnt/my_data/example.txt

Indeed, the following command will not work

$ singularity exec ubuntu.sif python3 hello_world.py /data/input/example.txt

Run a Singularity image - exec

/home/James

/tmp

/my_script/test

Python 2.7

Matlab

ubuntu.sif

Singularity

Fedora 34

Python 3.6R 3.5.2

+

/home/James

/tmp
Ubuntu 20

/data/input

d
efau

lt b
in

d

test.py

What about running the script test.py within the container?
/my_script/test is not one of the default binded folder (e.g. /home/James) …
…so we need to bind the folder /my_script/test into a folder within the container and
specify the container staring point (--pwd <path>).

example.txt

Run a Singularity image - exec

/home/James

/tmp

/my_script/test

Python 2.7

Matlab

Singularity

Fedora 34

Python 3.6R 3.5.2

+

/home/James

/tmp
Ubuntu 20

/data/input

d
efau

lt b
in

d

test.py

$ singularity exec -–bind /my_script/test:/my_script \

--pwd /my_script \

debian_run.sif \

python3 test.py

example.txt

/my_script test.py

ubuntu.sif

Run a Singularity image - exec

Singularity exec documentation: https://sylabs.io/guides/3.9/user-
guide/cli/singularity_exec.html

$ singularity exec [options] <image> <command>

$ singularity exec --bind <host_dir>:<cont_dir> <image> <command>

$ singularity exec --pwd <cont_start_directory> <image> <command>

https://sylabs.io/guides/3.9/user-guide/cli/singularity_exec.html

Run a Singularity image - shell

The shell command allows open a shell within the container and interact
with it.

$ singularity shell ubuntu.sif

Singularity ubuntu.sif :~> cat /etc/os-release | head -n 2

NAME="Ubuntu"

VERSION="16.04.6 LTS (Xenial Xerus)"

Singularity ubuntu.sif :~> exit

Flag --bind can be used even with the shell command

Note: The shell command is useful during the test of the container, but
due to its interactivity it should not be used in a batch job (Slurm)

Run a Singularity image - run

Container may contain the so called “runscript”, i.e. a script that is
automatically executed when the container is started, using the run
command.

The runscript can be any set of shell commands.

When the container is invoked, arguments following the container name
are passed to the runscript.

Flag --bind can be used even with the run command.

Example: let’s consider the image ubuntu_lc.sif having a runscript that
count the number of lines in text files passed as input parameter

$ singularity run ubuntu_lc.sif my_note.txt

37

Singularity image – exec/shell/run

Singularity exec: execute a command inside the container

$ singularity exec <image> <command>

Example:

$ singularity exec debian_run.sif python3 hello.py

Singularity shell: spawn a shell inside the container (interactive)

$ singularity shell <image>

Singularity run: execute the runscript of the container

$ singularity run <image>

Example:

$ singularity run debian_run.sif

Singularity image – exec/shell/run

Useful flags to be used with shell/run/exec (not exhaustive list)

• --bind: user-bind path specification

• --pwd: set starting directory

• --env: pass environment variable to contained process

• --no-home: do NOT mount users home directory

• --nv: enable Nvidia GPU

• --writable: file system accessible as read/write

Possible scenarios
A) A Singularity image file is already available

B) A Singularity image file is available on an online image repository

C) A Singularity definition file is available

D) Write/modify a Singularity definition file

Image Container

Run

Image Container

Run

Definition file Image Container

RunBuild

Definition file Image Container

RunBuildDevelop

Internet

Possible scenarios
A) A Singularity image file is already available

B) A Singularity image file is available on an online image repository

C) A Singularity definition file is available

D) Write/modify a Singularity definition file

Image Container

Run

Image Container

Run

Definition file Image Container

RunBuild

Definition file Image Container

RunBuildDevelop

Internet

Download pre-built image from
Singularity Library
Singularity Library is a collection of existing
Singularity pre-built images where the user can

• download existing pre-built image

• upload his own pre-built image

Singularity Library contains

• base pre-built images (e.g. ubuntu, centOS)

• application pre-built images (e.g. Golang, octave)

Download pre-built image from
Singularity Library
Find an image

• Using web interface https://cloud.sylabs.io/home

• Using command line interface ($ singularity search <keyword>)

Example: search octave image

https://cloud.sylabs.io/home

Download pre-built image from
Singularity Library

Example: search octave image

$ sudo singularity build my_octave.sif library://sylabs/examples/octave

Download pre-built image from
Docker Hub

Find an image in https://hub.docker.com/

To download a Docker image from Docker Hub and
convert it to a Singularity image, use the following
command

$ sudo singularity build octave_img.sif \
docker://mtmiller/octave

NOTE: the above command requires the root privileges, i.e. it can not be run in a HPC system

https://hub.docker.com/

Possible scenarios
A) A Singularity image file is already available

B) A Singularity image file is available on an online image repository

C) A Singularity definition file is available

D) Write/modify a Singularity definition file

Image Container

Run

Image Container

Run

Definition file Image Container

RunBuild

Definition file Image Container

RunBuildDevelop

Internet

Possible scenarios
A) A Singularity image file is already available

B) A Singularity image file is available on an online image repository

C) A Singularity definition file is available

D) Write/modify a Singularity definition file

Image Container

Run

Image Container

Run

Definition file Image Container

RunBuild

Definition file Image Container

RunBuildDevelop

Internet

Build an image from a Singularity
definition file

Given a singularity definition file, the corresponding image can
be built using the build command

$ sudo singularity build <image_name> <def_file>

As an example, let’s build the image my_img.sif using the
definition file my_def_file.def

$ sudo singularity build my_img.sif my_def_file.def

Build command

• Create/download an image from Singularity Library

$ sudo singularity build <image_name> \
library://<image_path_on_Singularity_library>

• Create/download an image from Docker Hub

$ sudo singularity build <image_name> \
docker://<image_path_on_docker_hub>

• Create an image from a Singularity definition file

$ sudo singularity build <image_name> <def_file>

https://sylabs.io/guides/3.7/user-guide/build_a_container.html#

NOTE: the above commands requires the root privileges, so they can not be run in a HPC system

https://sylabs.io/guides/3.7/user-guide/build_a_container.html

More on Build command
Workflow to use container

1. Build container on your own computer

2. Move the image from your computer to the HPC infrastructure

3. Run container on the HPC infrastructure

Definition file Image ContainerBuild Run

Why build container in your computer?
• The build process may require privileges (e.g. sudo)
• Building is not a computation intensive process
• Test on your computer before running on the HPC infrastructure

More on Build command

Please remember:

• The build command requires root privileges

• Singularity works only in Linux-based OS

Therefore, to build an image you need singularity installed in a
Linux-based OS where you have the root privileges (e.g. you PC).

Please check course webpage to learn how to get a Linux-based OS
(with root privileges) on your machine

Alternative*: if you have access to a Linux-based machine where
singularity is already installed but you don’t have root privileges
(e.g. CAPRI) you can use the remote build option

Singularity remote build

Singularity offers the option to run a build remotely, meaning that

• you run the singularity build command in a machine (e.g. CAPRI)
using some ad-hoc options (see link below) that do not require
the root permissions (i.e. without sudo)

• singularity upload your definition file in a remote server owned by
sylabs

• the singularity build command (with the root permissions) is
executed in that remote server and so the resulting .sif file is
hosted in the remote server

• singularity download the .sif file from the remote server to the
machine where you run the singularity build command (e.g.
CAPRI)

All the above steps are done automatically by singularity, you only
need to follow the instructions here https://cloud.sylabs.io/builder

https://cloud.sylabs.io/builder

Possible scenarios
A) A Singularity image file is already available

B) A Singularity image file is available on an online image repository

C) A Singularity definition file is available

D) Write/modify a Singularity definition file

Image Container

Run

Image Container

Run

Definition file Image Container

RunBuild

Definition file Image Container

RunBuildDevelop

Internet

Possible scenarios
A) A Singularity image file is already available

B) A Singularity image file is available on an online image repository

C) A Singularity definition file is available

D) Write/modify a Singularity definition file

Image Container

Run

Image Container

Run

Definition file Image Container

RunBuild

Definition file Image Container

RunBuildDevelop

Internet

Singularity definition file

A Singularity definition file (def file) is a text file that
contains the “receipt” of how to build the container.

Singularity def file has two main sections

• Header: it describes the core operating system to
bootstrap within the container, or an existing image

• Body: it describes the libraries, software and data
to put inside the container, together with additional
configurations

Singularity definition file

IDEA:
• If you are able to install the software in your PC using a

terminal
• … then you should be able to install it in a container.
• The definition files contains commands very similar to the

ones you would use to install the software in your PC.

As an example of a simple def file, let’s develop a container
with
• OS: Debian 10
• Libraries/software: Python 3.7, R 3.5.2, software from git

Key idea for developing containers!!!

Singularity definition file –
example

Bootstrap: library

From: debian:10

%post

apt-get update

apt-get install -y r-base r-base-dev

apt-get install -y python3 python3-dev

apt-get install -y git

mkdir $SINGULARITY_ROOTFS/my_software

cd $SINGULARITY_ROOTFS/my_software

git clone https://github.com/user/example_repo.git

H
ea

d
er

B
o

d
y

Start from an image available
in the Singularity library

An image containing Debian 10

Install R, python and git
inside the container

Create a directory and put
the code from git

Singularity definition file - header

The header is the first part of any Singularity def file

The first keyword is Bootstrap, followed by the name of the Bootstrap agent.
Bootstrap agents define the source of the “base” image that will be used to build a
container, usually an image containing only the OS or some software of interest.

Most used Bootstrap agents:

• library (Singularity image repository)

• docker (docker image repository aka Docker Hub)

• shub (other Singularity image repository aka Singularity hub)

• localimage (image saved in the file system)

Singularity provides specific keywords for each Bootstrap agents to specify additional
information about the chosen “base” image.

The complete list of Bootstrap agent and keywords is available at:
https://sylabs.io/guides/3.7/user-guide/definition_files.html#header

https://sylabs.io/guides/3.7/user-guide/definition_files.html#header

Singularity definition file - header

• “Base” image from Singularity library

Bootstrap: library

From: Debian:10

• “Base” image from Docker Hub

Bootstrap: docker

From: nvidia/cuda

• “Base” image from a local image file

Bootstrap: localimage

From: /home/james/Documents/my_tensorflow_image.sif

Singularity definition file - body

The body is the second part of any Singularity def file.

It defines how the container is build and what it will be inside it.

The body section may contain several sub-sections, all of them are optional. The most
common sub-section are:

• %files: where to copy files into the container

• %environment: where to set to define environment variables that will be set at
runtime

• %post: where to download file from internet, install software/libraries, create
directory/file

• %runscript: where to put the commands to execute using singularity run

• %labels: where to add metadata to the container

• %help: where to put the help information available using singularity run-help

A complete list of sub-sections is available at https://sylabs.io/guides/3.7/user-
guide/definition_files.html#sections

https://sylabs.io/guides/3.7/user-guide/definition_files.html#sections

Singularity definition file - body
%files

%file section allows to copy file from the host to the container.

Each line in the %file section is a pair <source> <destination>, where

• <source> is a path on the host filesystem

• <destination> is a path in the container

%files

/home/james/Documents/model_parameter.csv /mnt/model_parameter.csv

/home/james/Documents/note.txt

%environment

%environment section allow to define environment variables that will be set at runtime.
Note that environmental variable that should be used at build time should be specified in
the %post section.

%environment

export LC_ALL=C

Singularity definition file - body

%post

%post section allows to download file from internet (e.g. using git and wget), install
software/libraries, create directory/file, etc.

Commands in the %post section will be interpreted as shell command to the container OS.

%post
apt-get update && apt-get install -y gcc git
mkdir $SINGULARITY_ROOTFS/my_software
cd $SINGULARITY_ROOTFS/my_software
git clone https://github.com/user/example_C_repo.git
make
NOW_VAR=`date`

Any environmental variable defined in the %post section (e.g. NOW_VAR) is set only at
build time. To make environmental variables defined in the %post section available also at
run time, they must be included in the $SINGULARITY_ENVIRONMENT variable by text
redirection. In the example above, this correspond to add the following command at the
end of the post section:
echo "export NOW_VAR=\"${NOW_VAR}\"" >> $SINGULARITY_ENVIRONMENT

Singularity definition file - body

%runscript

%runscript sections allows to specify the command to execute
when the container is invoked using singularity run. Any arguments
following the container name will be passed to the runscript.

%runscript

echo "Container was created $NOW_VAR"

echo "Arguments received: $*"

exec /my_software/my_c_app.exe "$@" /mnt/model_parameter.csv

Singularity definition file - body

%labels
%labels section allows to add metadata to the container using a name-value pair.
Labels within a container can be inspected using the singularity inspect
command.

%labels
Author James
Version 1.0

%help
%help section allows to specify help information available using singularity run-help

%help
This is a simple example of Singularity container. The container

is based on Debian 10 and it contains a C program available in the
/my_software/ folder. When executed with singularity run, the
container will execute the C program installed in the %post
section, providing as command line input parameters the path to the
file provided in the command line invocation of the container and
the path to the file /mnt/model_parameter.csv

Singularity definition file - body
%files

/home/james/Documents/model_parameter.csv /mnt/model_parameter.csv

%environment

export LC_ALL=C

%post

apt-get update && apt-get install -y gcc git

mkdir $SINGULARITY_ROOTFS/my_software && cd $SINGULARITY_ROOTFS/my_software

git clone https://github.com/user/example_C_repo.git && make

NOW_VAR=`date`

echo "export NOW_VAR=\"${NOW_VAR}\"" >> $SINGULARITY_ENVIRONMENT

%runscript

echo "Container was created $NOW_VAR"

exec /my_software/my_c_app.exe "$@" /mnt/model_parameter.csv

%labels

Author James

Version 1.0

%help

This is a simple example of Singularity container. The container is based on Debian 10
and it contains a C program available in the /my_software/ folder. When executed with
singularity run, the container will execute the C program installed in the %post section,
providing as command line input parameters the path to the file provided in the command
line invocation of the container and the path to the file /mnt/model_parameter.csv

More on singularity definition file

Singularity suggest the following best practices for container definition:

• Always install packages, programs, data, and files into operating system locations (e.g. not
/home, /tmp , or any other directories that might get commonly binded on).

• Document your container: write a %help or %apphelp section.

• If you require any special environment variables to be defined, add them to the
%environment and %appenv sections of the build recipe.

• Files should always be owned by a system account (UID less than 500).

• Ensure that sensitive files like /etc/passwd, /etc/group, and /etc/shadow do not contain
secrets.

• Build production containers from a definition file instead of a sandbox.

A complete list of best practices and additional information about definition files are available
here: https://sylabs.io/guides/3.9/user-guide/definition_files.html#best-practices-for-build-
recipes

Do you want to see the definition file used to build an image? Use

$ singularity inspect –d <image_name>

https://sylabs.io/guides/3.9/user-guide/definition_files.html#best-practices-for-build-recipes

Singularity – Advanced topics

• Sandboxes (mutable containers)

• Container encryption

• Advanced build options

• Work with the Syslab Cloud Library

• Remote build

• Advanced binding/mounting options

• Singularity & MPI

• Singularity & GPU

https://sylabs.io/guides/3.7/user-guide/build_a_container.html#creating-writable-sandbox-directories
https://sylabs.io/guides/3.7/user-guide/build_a_container.html#building-encrypted-containers
https://sylabs.io/guides/3.7/user-guide/build_a_container.html#build-options
https://sylabs.io/guides/3.7/user-guide/cloud_library.html
https://sylabs.io/guides/3.7/user-guide/cloud_library.html#remote-builder
https://sylabs.io/guides/3.7/user-guide/bind_paths_and_mounts.html
https://sylabs.io/guides/3.7/user-guide/mpi.html
https://sylabs.io/guides/3.7/user-guide/gpu.html

Reproducibility
• In any container engine, the full reproducibility is guaranteed by using/sharing a specific

container image, not building an image from a specific definition file

• The same definition file may result in different images, depending on when/where the
build is done

• Reproducibility = image

Bootstrap: docker

From: Debian:10

%files

/home/james/param.csv /mnt/model_parameter.csv

%post

apt-get update && apt-get install -y gcc git

git clone https://github.com/alexdobin/STAR.git

Debian 10 image on DockerHub is regularly updated

File param.csv may be different

Default gcc and git may be updated

Git repository may be updated

Very important!!!

Singularity job in CAPRI

SingularityCE (version 3.8.3) is installed in CAPRI.

Execution of Singularity containers, typically through a singularity exec
command, must be scheduled using Slurm within the allgroups partition.

In case you need to do a quick check within the container (e.g. check the python
version inside the container), the singularity shell command could be run
in a the Slurm interactive partition.

IMPORTANT: no computation should be done using the singularity shell
command in the interactive partition.

If the Singularity containerized application can use MPI, OpenMP or GPU, then
the related Slurm options must be specified.

Additional information about using containerized application in Slurm is available
here: https://slurm.schedmd.com/containers.html

https://slurm.schedmd.com/containers.html

Example of Singularity job (serial)

#!/bin/sh

#SBATCH --job-name opencv

#SBATCH --error opencv.%j.err

#SBATCH --output opencv.%j.out

#SBATCH --mail-user james@gmail.com

#SBATCH --mail-type END,FAIL

#SBATCH --partition allgroups

#SBATCH --ntasks 1

#SBATCH --mem 32G

#SBATCH --time 02:25:00

cd $SLURM_SUBMIT_DIR

srun singularity exec tflow_opencv.sif python script.py

Container image Command to execute
within the container

singularity exec
command

Example of Singularity job (OpenMP)
#!/bin/bash

#SBATCH --job-name hello_mpi_openmp

#SBATCH --error errors_%j.txt

#SBATCH --output output_%j.txt

#SBATCH --partition allgroups

#SBATCH --ntasks 1

#SBATCH --cpus-per-task 32

#SBATCH --mem 180G

#SBATCH --time 04:15:00

cd $SLURM_SUBMIT_DIR

export OMP_NUM_THREADS=32

srun singularity exec read_aligner.sif aligner.exe

Container image Command to execute
within the container

singularity exec
command

Request 32 OpenMP threads

Set the required environmental variable OMP_NUM_THREADS
This env variable is defined also inside the container.

Example of Singularity job (MPI)

#!/bin/sh

#SBATCH --job-name mpi_singularity

#SBATCH --error mpi_singularity.%j.err

#SBATCH --output mpi_singularity.%j.out

#SBATCH --mail-user james@gmail.com

#SBATCH --mail-type END,FAIL

#SBATCH --partition allgroups

#SBATCH --ntasks 8

#SBATCH --mem 1G

#SBATCH --time 08:05:00

cd $SLURM_SUBMIT_DIR

spack load intel-parallel-studio@professional.2019.4

srun singularity exec mpi_ode.sif ./mpi_ode_solver

Request 8 MPI tasks

Container image MPI application to execute
within the container

singularity exec
command

Load MPI (e.g. Intel MPI)

Example of Singularity job (GPU)

#!/bin/sh

#SBATCH --job-name gpu_singularity

#SBATCH --error gpu_singularity.%j.err

#SBATCH --output gpu_singularity.%j.out

#SBATCH --mail-user james@gmail.com

#SBATCH --mail-type END,FAIL

#SBATCH --partition allgroups

#SBATCH --ntasks 1

#SBATCH –-gres=gpu:1

#SBATCH --mem 8G

#SBATCH --time 04:45:00

cd $SLURM_SUBMIT_DIR

srun singularity exec --nv nvidia_nn.sif ./gpu_nn_train

Container image

Request 1 GPU

Singularity option to enable GPU GPU application to execute
within the container

	Sezione predefinita
	Diapositiva 1: Singularity
	Diapositiva 2: Summary
	Diapositiva 3: Singularity(CE)
	Diapositiva 4: Singularity -> Apptainer
	Diapositiva 5: Singularity container workflow
	Diapositiva 6: Using container in HPC
	Diapositiva 7: Singularity image
	Diapositiva 8: Possible scenarios
	Diapositiva 9: Possible scenarios

	Run
	Diapositiva 10: Run a Singularity image - exec
	Diapositiva 11
	Diapositiva 12: Run a Singularity image - exec
	Diapositiva 13: Run a Singularity image - exec
	Diapositiva 14: Run a Singularity image - exec
	Diapositiva 15: Run a Singularity image - exec
	Diapositiva 16: Run a Singularity image - exec
	Diapositiva 17: Run a Singularity image - exec
	Diapositiva 18: Run a Singularity image - exec
	Diapositiva 19: Run a Singularity image - exec
	Diapositiva 20: Run a Singularity image - shell
	Diapositiva 21: Run a Singularity image - run
	Diapositiva 22: Singularity image – exec/shell/run
	Diapositiva 23: Singularity image – exec/shell/run

	Download image
	Diapositiva 24: Possible scenarios
	Diapositiva 25: Possible scenarios
	Diapositiva 26: Download pre-built image from Singularity Library
	Diapositiva 27: Download pre-built image from Singularity Library
	Diapositiva 28: Download pre-built image from Singularity Library
	Diapositiva 29: Download pre-built image from Docker Hub
	Diapositiva 30: Possible scenarios
	Diapositiva 31: Possible scenarios
	Diapositiva 32: Build an image from a Singularity definition file

	Build
	Diapositiva 33: Build command
	Diapositiva 34: More on Build command
	Diapositiva 35: More on Build command
	Diapositiva 36: Singularity remote build

	Sezione predefinita
	Diapositiva 37: Possible scenarios
	Diapositiva 38: Possible scenarios

	Definition
	Diapositiva 39: Singularity definition file
	Diapositiva 40: Singularity definition file
	Diapositiva 41: Singularity definition file –example
	Diapositiva 42: Singularity definition file - header
	Diapositiva 43: Singularity definition file - header
	Diapositiva 44: Singularity definition file - body
	Diapositiva 45: Singularity definition file - body
	Diapositiva 46: Singularity definition file - body
	Diapositiva 47: Singularity definition file - body
	Diapositiva 48: Singularity definition file - body
	Diapositiva 49: Singularity definition file - body

	Other
	Diapositiva 50: More on singularity definition file
	Diapositiva 51: Singularity – Advanced topics
	Diapositiva 52: Reproducibility

	job
	Diapositiva 53: Singularity job in CAPRI
	Diapositiva 54: Example of Singularity job (serial)
	Diapositiva 55: Example of Singularity job (OpenMP)
	Diapositiva 56: Example of Singularity job (MPI)
	Diapositiva 57: Example of Singularity job (GPU)

